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Within the framework of Classical Electrodynamics (CED) it is common practice to
choose freely an arbitrary gauge condition with respect to a gauge transformation of
the electromagnetic potentials. The Lorenz gauge condition allows for the derivation of
the inhomogeneous potential wave equations (IPWE), but this also means that scalar
derivatives of the electromagnetic potentials are considered to be unphysical. However,
these scalar expressions might have the meaning of a new physical field, S. If this is
the case, then a generalised CED is required such that scalar field effects are predicted
and such that experiments can be performed in order to verify or falsify this generalised
CED. The IPWE are viewed as a generalised Gauss law and a generalised Amper̀e law,
that also contain derivatives of S, after reformulating the IPWE in terms of fields. Since
charge is conserved, scalar field S satisfies the homogeneous wave equation, thus one
should expect primarily sources of dynamic scalar fields, and not sources of static scalar
fields. The collective tunneling of charges might be an exception to this, since quantum
tunneling is the quantum equivalent of a classical local violation of charge continuity.
Generalised power/force theorems are derived that are useful in order to review historical
experiments since the beginning of electrical engineering, for instance Nikola Tesla’s
high voltage high frequency experiments. Longitudinal electro-scalar vacuum waves,
longitudinal forces that act on current elements, and applied power by means of static
charge and the S field, are predicted by this theory. The energy density and field stress
terms of scalar field S are defined. Some recent experiment show positive results that are
in qualitative agreement with the presented predictions of scalar field effects, but further
quantitative tests are required in order to verify or falsify the presented theory. The
importance of Nikola Tesla’s pioneering research, with respect to the predicted effects,
cannot be overstated.

1. Introduction

In general, the Maxwell/Heaviside equations, completed by the Lorentz force law,
are considered to be a complete theory for classical electrodynamics [12]. In differ-
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ential form these equations are:

~∇·~E =
ρ

ε0
Gauss law (1)

~∇×~B − ε0µ0
∂~E

∂t
= µ0

~J Ampère law (2)

~∇×~E +
∂~B

∂t
= ~0 Faraday law (3)

~∇·~B = 0 (4)

The electric and magnetic field can be defined in terms of the electromagnetic
potentials, Φ and ~A:

~B = ~∇×~A (5)

~E = −~∇Φ − ∂~A

∂t
(6)

The Maxwell/Heaviside equations are invariant with respect to a gauge trans-
formation, defined by a scalar function χ:

Φ −→ Φ′ = Φ +
∂χ

∂t
(7)

~A −→ ~A′ = ~A− ~∇χ (8)
~B −→ ~B′ = ~B (9)
~E −→ ~E′ = ~E (10)

because the electromagnetic fields ~E and ~B are invariant with respect to this trans-
formation. This means that for each physical situation there is not a unique solution
for the potentials Φ and ~A, because a particular solution for Φ and ~A can be trans-
formed into many other solutions via an arbitrary scalar function χ. From the set of
all equivalent electromagnetic potential functions, one can choose freely a particular
subset such that these potentials satisfy an extra gauge condition, such as

S = −λ0ε0µ0
∂Φ

∂t
− ~∇·~A = 0 (11)

When λ0 = 1 this condition is known as the Lorenz gauge condition [11], and when
λ0 = 0 one speaks of the Coulomb gauge condition. This generalised gauge condition
was introduced by H. Helmholtz, ( see, e.g., [4,7]. A similar gauge condition was
used by A.E. Chubykalo and V. Onoochin [3] for the derivation of potential wave
equations with arbitrary speed. For potentials that satisfy S = 0, we can cast
the Gauss law and the Ampère law in the form of two decoupled inhomogeneous
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potential wave equations:

λ0ε0µ0
∂2Φ

∂t2
− ~∇2Φ =

ρ

ε0
(12)

λ0ε0µ0
∂2~A

∂t2
+ λ0

~∇×~∇×~A − ~∇~∇·~A = λ0µ0
~J (13)

which are the inhomogeneous potential wave equations (IPWE). For λ0 = 1, a
class of solutions of these differential equations are the retarded potentials, and in
particular the Liénard-Wiechert potentials [10, 25]. For 0 < λ0 < 1 the longitudinal
~A potential waves and the Φ potential waves are superluminal. The Coulomb gauge
can be interpreted as potential waves with infinitely great speed, or instantaneous
action at a distance.

This philosophy of gauge transformation seems to be reasonable, but a verifi-
cation/falsification of it by means of experiments is impossible, which is in sharp
contrast with the idea of physics as an emperical science. A very different approach
is to regard the IPWE as generalised Gauss and Ampère laws. Like James C.
Maxwell, who added the famous displacement current term to the Ampère law, one
can add derivatives of expression S to the Maxwell/Heaviside equations:

~∇·~E − ∂S

∂t
=

ρ

ε0
(14)

~∇×~B +
1

λ0

~∇S − ε0µ0
∂~E

∂t
= µ0

~J (15)

~∇×~E +
∂~B

∂t
= ~0 (16)

~∇·~B = 0 (17)

The addition of these derivatives of S automatically yield the decoupled potential
wave equations without the need for an extra gauge condition. These field equations
are a generalisation of classical electrodynamics, since the special case S = 0 results
into the usual Maxwell/Heaviside equations, and they are variant with respect to
an arbitrary scalar gauge transformation χ:

S −→ S′ = S−
(

λ0ε0µ0
∂2χ

∂t2
− ~∇2χ

)
(18)

unless χ is a solution of the homogeneous wave equation. The expression S now
has the meaning of a physical and observable scalar field. This scalar field interacts
with the vector fields ~E and ~B, as described by the generalised field equations. The
question: ”Is classical electrodynamics a complete classical field theory, with respect
to scalar expression S?”, can not be answered within the context of the standard
Maxwell/Lorentz theory, since this theory treats S as a non-observable non-physical
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function, and this is premature. The usual gauge freedom and gauge condition S = 0

are based on the presumption that partial derivatives of S are not part of complete
set of field equations in the first place, which implies that S is disregarded as a
physical field even before the theoretical development of the gauge transformation.
In other words, the assumed gauge freedom and free choice of gauge conditions are
part of a sequence of circular arguments, that seem to ”prove” that S has no physical
relevance. Oliver W. Heaviside did not like the abstract electromagnetic potentials
and he preferred the concept of observable fields. In this spirit it is assumed that S

can cause observable field effects. This is required for a testable theory. According
to this philosophy, the Lorenz gauge condition and the Coulomb gauge condition
are special physical conditions, similar to: ’the electric field is zero’.

Next, the induction of scalar fields is discussed, followed by the derivation of gen-
eralised force/power theorems in order to predict the type of observable phenomena
attributable to the presence of scalar fields.

2. The induction of scalar fields

Considering the definition of S (S = −λ0ε0µ0
∂Φ
∂t − ~∇·~A), one might design an

electrical device such that factor ∂Φ/∂t or factor ~∇·~A is optimised, and such that
these two scalar factors do not cancel each other. With ∂Φ/∂t we can associate
systems of high voltage and high frequency, such as pulsed power systems. With ~∇·~A
we can associate a source of divergent/convergent currents, which is similar to the
induction of a magnetic field by rotating currents, ~B = ~∇×~A. For instance, a spherical
or cylindrical capacitor can show currents with non-zero divergence/convergence.
If the capacity is high, then we can expect a high ~∇·~A, since strong currents need
to charge/discharge the capacitor. If the capacity is low, then a higher factor ∂Φ/∂t
can be expected, since then it takes less time to charge and discharge the capacitor
to high voltages.

Electromagnetic fields are of static or dynamic type. Considering the inhomo-
geneous field wave equations:

λ0ε0µ0
∂2~E

∂t2
+ λ0

~∇×~∇×~E − ~∇~∇·~E = λ0µ0

(
−∂~J

∂t
−

~∇ρ

λ0ε0µ0

)
(19)

ε0µ0
∂2~B

∂t2
− ~∇2~B = µ0(~∇×~J) (20)

λ0ε0µ0
∂2S

∂t2
− ~∇2S = λ0µ0

(
−~∇·~J− ∂ρ

∂t

)
(21)

that are deduced from the generalised Maxwell/Heaviside field equations, we can
expect primarily dynamic scalar fields, because of the conservation of charge. This
is the reason why the discovery of scalar field S is not as easy as the discovery
of the electromagnetic fields via simple static field type experiments. Quantum
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tunneling of electrons can be understood on the classical level as a local violation of
charge conservation, for instance at Josephson junctions. Hence, collective quantum
tunneling devices might induce a new type of classical field: a static scalar field. A
dynamic scalar field is induced by a charge/current density wave: set ~E = ~0 and
~B = ~0, then Eq.(14) and Eq.(15) become:

−∂S

∂t
=

ρ

ε0
(22)

~∇S = λ0µ0
~J (23)

Since S satisfies wave Eq.(21), also the charge density ρ and current density ~J are
wave solutions, and for λ0 > 1 these wave solutions are sub-luminal. Charge/current
density waves are known phenomena in superconductors. The factor λ may differ
for non-vacuum media, depending on a new type of charge/current polarisation
property of a macroscopic medium. A new type of scalar field boundary condition
can be defined for scalar fields, expressed by parameter λ.

3. Generalised power/force laws

First, a source transformation is defined in order to generalise the standard electro-
dynamic force and power theorems:

ρ −→ ρ′ = ρ + ε0
∂S

∂t
(24)

~J −→ ~J′ = ~J− 1

λ0µ0

~∇S (25)

This source transformation transforms the Maxwell equations into the generalised
Maxwell equations. The electrodynamic power theorem and force theorem are given
by:

µ0

(
~J·~E
)

= −
∂
(
ε0µ0E

2 + B2
)

2 ∂t
− ~∇·

(
~E×~B

)
(26)

µ0

(
ρ~E +~J×~B

)
= ε0µ0

(
(~∇·~E)~E + (~∇×~E)×~E

)
+ (~∇×~B)×~B (27)

−ε0µ0
∂( ~E×~B)

∂t

Next, the left hand side of these theorems is transformed:

µ0

(
~J·~E
)

−→ µ0

(
~J − 1

λ0µ0

~∇S

)
·~E = (28)

µ0

(
~J·~E
)
− 1

λ0
(~∇S)·~E =

µ0

(
~J·~E
)
− 1

λ0

~∇·(~ES) +
1

λ0
S~∇·~E =
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µ0

(
~J·~E
)
− 1

λ0

~∇·(~ES) +
1

λ0
S

(
ρ

ε0
+

∂S

∂t

)
=

µ0
~J·~E +

1

λ0

ρ

ε0
S − 1

λ0

~∇·(~ES) +
1

λ0

∂(S2)
2∂t

µ0

(
ρ~E +~J×~B

)
−→ (29)

µ0

(
(ρ + ε0

∂S

∂t
)~E + (~J− 1

λ0µ0

~∇S)×~B

)
=

µ0

(
ρ~E +~J×~B

)
+ ε0µ0

∂S

∂t
~E − 1

λ0
(~∇S)×~B =

µ0

(
ρ~E +~J×~B

)
+ ε0µ0

∂(S~E)
∂t

− 1

λ0
(~∇S)×~B − ε0µ0

∂~E

∂t
S =

µ0

(
ρ~E +~J×~B

)
+ ε0µ0

∂(S~E)
∂t

− 1

λ0
(~∇S)×~B−

(
~∇×~B +

1

λ0

~∇S − µ0
~J

)
S =

µ0

(
ρ~E +~J×~B +~JS

)
+ ε0µ0

∂(S~E)
∂t

− 1

λ0
(~∇S)×~B −

(
~∇×~B +

1

λ0

~∇S

)
S

The power theorem and force theorem are transformed into:

µ0
~J·~E +

ρ

λ0ε0
S = −

∂
(
ε0µ0E

2 + B2 + 1
λ0

S2
)

2 ∂t
− ~∇·

(
~E×~B− 1

λ0

~ES

)
(30)

µ0

(
ρ~E +~J×~B +~JS

)
= ε0µ0

(
(~∇·~E)~E + (~∇×~E)×~E

)
(31)

+ (~∇×~B +
1

λ0

~∇S)S + (~∇×~B +
1

λ0

~∇S)×~B

− ε0µ0
∂(~E×~B + ~ES)

∂t

The new terms in these theorems need to be interpreted. The generalised Poynting
vector is: ~P = ~E×~B − 1

λ0

~ES. The power flow vector 1
λ0

~ES belongs to a new type of
vacuum wave, and by setting ~B = ~0 we can deduce the following wave equations
from the generalised Maxwell/Heaviside equations:

λ0ε0µ0
∂2S

∂t2
− ~∇·~∇S = 0 (32)

λ0ε0µ0
∂2~E

∂t2
− ~∇~∇·~E = 0 (33)

The solution of these wave equations is a longitudinal electro-scalar wave, or LES
wave. The term S2 represents the energy density of scalar field S. The interesting
term ρ

λ0ε0µ0
S can be interpreted as the applied power by means of static charge ρ and

a scalar field S, which is by definition a dynamic electric potential and divergent
magnetic potential. The new force term ~JS is a longitudinal force that acts on
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a current element ~J. Also new magneto-scalar stress terms appeared in the force
theorem. The scalar field is like a scalar form of magnetism: it acts on current
elements and it interacts with the electric field in vacuum. The derivation of these
theorems was already published in [23] by means of the biquaternion calculus [6],
in case λ0 = 1.

4. Experimental evidence

4.1.Longitudinal vacuum waves

Nikola Tesla was one of the first scientist who mentioned the existence of longitu-
dinal electric vacuum waves. Initially he did not believe that the wireless signals
discovered by Hertz were the transversal electromagnetic (TEM) waves as predicted
by Maxwell. Later Tesla acknowledged TEM waves, but he also insisted on the ex-
istence of energy efficient longitudinal electric waves, applicable for the wireless
transport of energy and wireless communication. Longitudinal vacuum waves were
(and still are) not accepted by the physics community as a physical reality, because
this type of wave vacuum wave is not predicted by the standard theory of electro-
dynamics. This should be reconsidered. Tesla’s patents describe wireless energy
systems [22] based on Tesla’s resonant transformer [19] and ball-shaped antennas.
Tesla optimised [21] the voltage and frequency of the signal of his resonant trans-
former by using a primary pancake coil [20] with low self-induction and a secondary
spherical capacitor with low capacity. The secondary circuit voltage is about a
million volt or higher. In order to prevent discharges from the secondary capacitor
and secondary coil, Tesla isolated the spherical capacitor in a vacuum tube, and
he electrically isolated the secondary coil by submerging the coil in an oil reser-
voir. The capacitor could be made smaller with reduced capacity, because of the
reduced risk of discharge, which further enabled Tesla to apply higher frequencies
and higher voltages. Obviously Tesla optimised scalar factor ∂Φ/∂t , and not scalar
factor ~∇·~A. Tesla claimed that his resonant transformer system could transmit
longitudinal electric waves that carry much higher energy than Hertz waves.

Ignatiev’s experiment of longitudinal electric wave transmission, by means of
a large spherical antenna, confirmed the existence of longitudinal electric vacuum
waves without magnetic component [9]. Ignatiev discovered that the transmitted
energy was unusually high. In order to explain the result of longitudinal electric
wave transmission Ignatiev concluded that a modification of the Gauss law is neces-
sary. A possible modification of Gauss’ law is presented in this paper, see Eq. (14).
According to Ignatiev the measured propagation speed was about 1.2c, in fact faster
than light. Factor 1.2, is still subject of debate, and the error margin in the mea-
surement data produced by Ignatiev is reviewed. Ignatiev excluded the existence of
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the magnetic field component in the transmitted wave, and this is enough reason
to refer to his experiment.

Recently, Wesley and Monstein published a paper [13] on the wireless trans-
mission of longitudinal electric waves, also by means of a spherical antenna, and
again the authors confirmed the existence of such a wave. According to Wesley and
Monstein the transmitted energy flux is proportional to:

~P = −~∇Φ
∂Φ

∂t
(34)

and the field energy density is:

D =
1

2
(~∇Φ)2 +

1

2

(
∂Φ

c∂t

)2

(35)

which is in agreement with the defined power flow ~ES and the energy density of the
electric and scalar fields, 1

2E2 and 1
2S2 (except for a factor ε0µ0), in case we ignore

the magnetic potential ~A. Wesley and Monstein determined the polarisation of
the received signal, which was indeed longitudinal. However, they did not present a
background theory for the presented laws for energy flux and energy density. Wesley
and Monstein claim Eq. (34) and Eq. (35) can be derived from Eq. (12). This is
not true. Only after the introduction of a physical scalar field ∂Φ/c∂t and after
the deduction of the power theorem Eq. (30), is it possible to deduce Eq. (34) and
Eq. (35). Since the generalised power theorem (30) was published already in year
2001 [23], it is fair to assume Wesley and Monstein reduced power theorem (30) to
the restricted form of Eq. (34) and Eq. (35), without any reference to [23].

In [17] a Coulomb wave is described by Tzontchev, Chubykalo and Rivera-Juárez,
which is a longitudinal electric wave. According to their measurements the Coulomb
interaction is not instantaneous, but it has a finite speed which is approximately c.
A Coulomb potential can be decomposed into an integral sum of electric potential
waves [24] that all have the same speed. The gradient of one such an electric
potential wave is a longitudinal electric wave. The integral sum of all longitudinal
waves constitutes the Coulomb electric field. As a consequence, a variation in
Coulomb potential spreads with finite velocity, for instance during a discharge.
Since the time differential of one such an electric potential wave is a scalar field
wave, there is possibly a hidden energetic interaction with the charge in the form
of longitudinal electro-scalar waves that have frequencies varying from zero to some
cut off frequency. Similar to this is the electro-magnetic wave Zero Point Field
interaction with a particle, which is based on Max Planck’s second hypothesis on the
black body radiation energy spectrum, as an alternative to electro-magnetic wave
quantization. A difference with the longitudinal Whittaker waves is the random
phase of the ZPF electro-magnetic waves.
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4.2.Longitudinal electrodynamic forces

Longitudinal electrodynamic forces have been observed in several experiments, for
example exploding wire experiments by Jan Nasilowski [15] and Peter Graneau [5].
According to Graneau, the pressure due to longitudinal forces would be substantially
greater than the pinch pressure. Assis and Bueno [1] showed that Ampère’s force
law cannot be discriminated from Grassmann’s force law for current elements, for
any closed current circuit. They conclude both laws do not describe longitudinal
forces, therefore a new theory is necessary in order to explain such forces. The
standard field stress tensor does not describe longitudinal forces either, see Eq. (28),
because a longitudinal force term at the right hand site would not be balanced by
a longitudinal force term at the left hand site, and that would render the force
theorem false. Longitudinal forces can be explained by the presence of a scalar field
and by the generalised force theorem (32), expressed by the term ~JS. This force is
always parallel to the direction of current density ~J. Then one should verify that a
scalar field is involved, that is induced by a source of high frequency high voltage, or
by divergent/convergent currents in a conductor or plasma. Periodic longitudinal
forces give rise to charge density waves and stress [14, 16] waves, and vice verse: a
non-zero current divergence is the source of a scalar field that acts longitudinally
on nearby current elements, such that another area of non-zero current divergence
is created, etc... Setting ~E = ~B = ~0 in the generalised Maxwell equations, leads to
charge density and current density waves; in this case −∂S

∂t = ρ
ε0

and ~∇S = λ0µ0
~J,

and since S is a wave solution, also ρ and ~J are waves. The fraction pattern of
an exploded wire is very similar to a wave, perhaps as the direct consequence of
a charge/current density wave and the breaking of the metal bond between metal
atoms in areas with very low or very high electron density. Also Ampère’s hairpin
experiment [2] shows areas with divergent and convergent currents: at the exact
location where currents enter and leave the hairpin [8]. An interesting patent by
R.L. Schlicher [18] describes a three dimensional loop antenna with divergent and
convergent pulsed currents. In this antenna a force is developed of about 0.1 Newton
that seems to be longitudinal rather than transversal to the current elements on
which the force acts. The loop antenna conductors are asymmetrical and connected
to a pulsed power source of 1 to 100 Hertz. Schlicher attributes the force effect to a
magnetic field gradient, but he also admits that it is very difficult to describe this
effect precisely. An alternative explanation would be the induction of a scalar field
by the convergent currents in the asymmetrical loop antenna, that gives rise to a
longitudinal force.

4.3.Applied power from static charge and a scalar field

Usually power theorem (26) describes that an applied power source with density
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~E·~J is converted into a radiated energy flow with density ~∇·(~E×~B) and the change
in field energy 1

2E2 and 1
2B2. According to the generalised power theorem (30),

a scalar field S can turn an object with charge density ρ into an electrical power
source with power density 1

λ0ε0µ0
ρS. This static charge power source is a remarkable

prediction by the theory. When the magnetic potential is ignored, this power density
is simply ρ∂Φ

∂t . Usually, the electric potential energy of a charge Q in the presence
of an electric potential V equals W = QV. The electrical power equals P = dW

dt =
d(QV)

dt = dQ
dt V + Q dV

dt = IV + Q dV
dt . The second term is unusual and it can only be

understood as a scalar field effect. A large charge reservoir Q in an electric potential
V might absorb or radiate longitudinal electro-scalar radiation, in case the potential
is rapidly fluctuating in time, while the charge is rather static. Although rumours
exist that this actually has been observed, the author is not aware of any published
scientific experiments with respect to this effect.

5. Conclusions

The introduction of gauge conditions in CED implies that scalar derivatives of the
electromagnetic potentials are non-physical. This hypothesis cannot be tested, and
it should be reversed into the testable and positive hypothesis of measurable scalar
field effects, such as longitudinal electric vacuum waves, longitudinal electrodynamic
forces, and energy conversions by means of static charge and a scalar field. If
these effects cannot be detected in general, then finally a physical justification for
CED gauge conditions has been obtained. However, some experiments indicate
the existance of scalar field effects different from electro-magnetic effects. Further
quantitative tests are needed in order to obtain scientific proof for the existence
of a physical scalar field S, as defined in this paper. A positive verification has
consequences for the science of physics. References to ”unphysical” scalar photons or
”unphysical” longitudinal photons are incorrect, since the qualification ”unphysical”
is not testable, and the underlying rational arguments are circular. The neglect of
Galileo Galilei’s philosophy of physics by the physics community, with respect to
gauge conditions, resulted into the rejection of Tesla’s observation of longitudinal
electric waves. There are urgent reasons to review Tesla’s scientific heritage, such
as the need for new forms of energy and efficient energy technologies.
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interaction does not spread instantaneously, Hadronic Journal 23 (2000), 401-424.

18. R.L. Schlicher,Nonlinear electromagnetic propulsion system and method , Septem-
ber (1992), United States Patent 5,142,861.

19. N. Tesla, Apparatus for producing electric currents of high frequency and potential,
September 22 (1896), United States Patent 568,176.

20. N. Tesla, Coil for Electro-magnets, Januari 9 (1894), United States Patent 512,340.
21. N. Tesla, Means for increasing the intensity of electrical oscillations, October 22

(1901), United States Patent 685,012.
22. N. Tesla, Method of intensifying and utilising effects transmitted through natural

media, November 5 (1905), United States Patent 685,953.
23. K.J. van Vlaenderen and A. Waser, Generalisation of Classical Electrodynamics to

Admit a Scalar Field and Longitudinal Waves, Hadronic Journal 24 (2001), 609-628.
24. E.T. Whittaker, On the partial differential equations of mathematical physics,

Mathematische Annalen 57 (1903), 333-355.
25. E. Wiechert, Elektrodynamische Elementargesetze, Archives Néerlandaises Ser.2 4,
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